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Abstract
Recently Bender, Brody, Jones and Meister found that in the quantum
brachistochrone problem the passage time needed for the evolution of certain
initial states into specified final states can be made arbitrarily small, when the
time-evolution operator is taken to be non-Hermitian but PT -symmetric. Here
we demonstrate that such phenomena can also be obtained for non-Hermitian
Hamiltonians for which PT -symmetry is completely broken, i.e. dissipative
systems. We observe that the effect of a tunable passage time can be achieved
by projecting between orthogonal eigenstates by means of a time-evolution
operator associated with a non-Hermitian Hamiltonian. It is not essential that
this Hamiltonian is PT -symmetric.

PACS numbers: 03.65.Xp, 03.65.Ca, 03.65.−w, 11.30.Er

1. Introduction

To find the brachistochrone is one of the oldest problems in classical mechanics tracing back
to Newton and Leibniz. It consists of finding the trajectory between two locations of a particle,
subject to a gravitational field, for which the transition time becomes minimal. This problem
can be generalized to a relativistic [1] and to a quantum mechanical setting [2–6]. In the latter
case one seeks the minimal time t =: τ , referred to as passage time, such that

|ψf 〉 = e−iτH |ψi〉, (1)

for given initial and final states |ψi〉 and |ψf 〉, respectively. Equality can be achieved by
possibly tuning some parameters in the Hamiltonian H.

Bender, Brody, Jones and Meister [6] extended this treatment by also allowing non-
Hermitian Hamiltonians in (1). The surprising result found in [6] was that when involving
non-Hermitian, but PT -symmetric Hamiltonians, in the evolution operator, the passage time
can be made arbitrarily small by varying a parameter in H while keeping the transition
frequency between two states constant. At present this phenomenon is an observation and no
explanation has been provided as to where this effect might originate from.
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One might suspect that one could make the PT -symmetry responsible for the observation
and seek similar arguments as those which allow one to explain the reality of the spectrum
of a PT -symmetric non-Hermitian Hamiltonian. See for instance [7–10] for recent results
and reviews. The main purpose of this paper is to investigate whether PT -symmetry can be
utilized as well to explain the observed phenomenon of a tunable passage time. In fact, we
find that the same conclusion can be drawn when considering non-Hermitian Hamiltonians
with complex eigenvalues describing dissipative systems, i.e. those for which PT -symmetry
is definitely broken. This means the possibility of arbitrarily small passage times results from
the non-Hermitian nature of the Hamiltonian involved in the time-evolution operator and not
its PT -invariance.

Our manuscript is organized as follows: in section 2 we derive passage times for PT -
symmetric Hamiltonians for various different types of initial and final states. In section 3 we
perform a similar analysis for non-Hermitian Hamiltonians with complex eigenvalues deriving
similar phenomena to those section 2. We state our conclusions in section 4.

2. Pseudo-Hermitian Hamiltonians

We start by considering PT -symmetric or rather pseudo-Hermitian Hamiltonians. We recall
[11–15] that a non-Hermitian Hamiltonian H is said to be a pseudo-Hermitian operator, if
there exists a Hermitian operator η, with regard to the standard inner product, such that

H † = η2Hη−2 ⇔ h = ηHη−1 = h†. (2)

The virtue of such a conjugate pair h and H is that they possess an identical eigenvalue
spectrum, because the Hamiltonians lie in the same similarity class. The reality of the spectrum
is guaranteed, since one of the Hamiltonians involved, i.e. h, is Hermitian. The solutions of
the corresponding time-independent Schrödinger equations H� = ε� and hφ = εφ are then
simply related as

� = η−1φ. (3)

Let us first discuss the quantum brachistochrone problem for these types of systems.

2.1. φ → φ via u ≡ � → � via U

Taking the initial state |ψi〉, the final state |ψf 〉 to be orthonormal states of a Hermitian
Hamiltonian system and the time-evolution operator in (1) to be Hermitian as well is the
simplest situation to investigate. Equivalent would be to investigate the non-Hermitian system
obtained by the similarity transformations (2) and (3). Here we want to solve the quantum
brachistochrone problem in a slightly less stringent form as studied in [2–6]. Instead of solving
(1), we just consider the physical relevant matrix element and seek the minimal time t =: τ ,
such that a given transition probability is reached. This means for normalized initial and final
states we solve the equation

|〈φf |u(τ, 0)φi〉| = |〈�f |U(τ, 0)�i〉η| = β, (4)

for τ with given constant 0 � β � 1. Here u(t, t ′) and U(t, t ′) = η−1u(t, t ′)η are the
time-evolution operators, which evolve a wavefunction from time t ′ to t associated with
the Hermitian and non-Hermitian system, respectively. In order to make the inner product
involving the �s meaningful, we have to change the metric in the second expression in (4) as
was argued in [11, 13, 16] or equivalently use a biorthonormal basis, see e.g. [17, 18]. Here
we use the convention 〈ψf |Oψi〉η := 〈ψf |η2Oψi〉 for the η-inner product with O being some
operator. Clearly, for given time-evolution operators and final and initial states a real solution
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for τ for all values of β does not always exist. Natural choices are for instance β = 1 or the
maximum transition amplitude.

Starting with time independent Hamiltonians, the problem is solved in a straightforward
manner as we simply have u(τ, 0) = e−iτh and U(τ, 0) = e−iτH . When φi and φf are
orthogonal states we can find a solution in complete generality. Taking |φ+〉 and |φ−〉 to be
two normalized eigenstates of h, the two states

|φf/i〉 = 1√
2
(|φ−〉 ± i|φ+〉). (5)

are orthonormal with regard to the standard inner product. It is then straightforward to compute
the matrix element occurring in (1)

〈φf |e−ithφi〉 = 1√
2
〈φf (|e−itε−φ−〉 − i|e−itε+φ+〉)

= 1
2 e−iε−t (1 − e−iωt ), (6)

where the transition frequency between the two states is denoted as ω = ε+ − ε−. This means
the quantum brachistochrone problem in the version (1) is solved for the passage time

τ = 2

ω
arcsin β. (7)

For β = 1 we recover τ = π/ω, which in slightly different forms, is well known and holds for
any Hermitian or equivalent non-Hermitian system, as specified in (2). As pointed out first in
[6] more spectacular results can be obtained when involving non-Hermitian Hamiltonians in
the evolution operator while keeping the eigenstates to be associated to a Hermitian system.

2.2. φ → φ via U ≡ � → � via u

In [6] a Gedanken experiment was proposed in which a particle passes through a region,
which causes its governing Hamiltonian to change from a Hermitian to a non-Hermitian one.
This scenario implies that the Hamiltonian becomes explicitly time-dependent. The situation
considered in [6] was for the initial and final states to be orthogonal states in a Hermitian system,
whereas the time evolution was associated with a non-Hermitian Hamiltonian. In general, we
can write this temporary change of the Hamiltonian to a non-Hermitian Hamiltonian in the
form

H(t) = h + gh1(t), (8)

where h = h† and h1 �= h
†
1. This means we consider an analogue to a conventional time

dependent scenario, however, with the difference that the perturbation is now non-Hermitian.
A standard example of H(t) in (8) with h1 being Hermitian is for instance the Stark–
LoSurdo Hamiltonian describing an atom in an external electric field, with h representing
the unperturbed atomic system and h1(t) the external electric field. In [7, 19] the alternative
scenario was considered in which also the unperturbed system was taken to be non-Hermitian.
The treatment in [6] corresponds to the special case of (8) in which the time dependence is of the
form of a stepfunction. This means to describe that setting one has to take H(t) = H = h+gh1

for 0 � t � τ and H(t) = h for t > τ , with τ being the passage time rather than the pulse
length as in the aforementioned example.

Then, depending on the choice of the initial and final states, the time-evolution operator
and the inner product, the quantum brachistochrone problem can be formulated in various
different ways from (4). For instance, when projecting between orthogonal Hermitian states
via a non-Hermitian time-evolution operator one may consider

|〈φf |U(τ, 0)φi〉η|
‖φf ‖η‖φi‖η

= |〈ηφf |u(τ, 0)ηφi〉|
|ηφf ||ηφi | = β, (9)

3
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where we used the η-norm defined as ‖φ‖η := |ηφ| = √〈ηφ|ηφ〉. This switching between
the eigenstates is in fact the key point of the entire analysis. We may view equation (9) in two
equivalent ways. On one hand on the right-hand side we just project with a standard Hermitian
time-evolution operator, between two somewhat unusual, but perfectly viable initial and final
states ηφi and ηφf , respectively. This is a picture entirely in the standard quantum mechanical
description with the difference that the initial and final states are not taken to be orthogonal.
On the other hand we may use the equality and view this expression as a projection of some
orthogonal initial and final states by means of a non-Hermitian time-evolution operator. We
stress the fact that the initial and final states do not propagate in time and that the metric is not
changed in this procedure1.

Slightly different and less natural is the possibility corresponding to (1) when projecting
with the standard inner product onto a final state. When written as an expectation value this
amounts to

|〈φf |U(τ, 0)φi〉|
‖φf ‖η−1‖φi‖η

= |〈ηφf |u(τ, 0)ηφi〉η−1 |
|η−1φf ||ηφi | = β. (10)

Alternatively, one may also envisage a situation when one projects from orthogonal Hermitian
states onto eigenstates of a non-Hermitian Hamiltonian via a non-Hermitian time-evolution
operator, or vice versa. Then one should solve

|〈�f |U(τ, 0)φi〉η|
‖�f ‖η‖φi‖η

= |〈φf |u(τ, 0)ηφi〉|
|φf ||ηφi | = β, (11)

or
|〈φf |U(τ, 0)�i〉η|

‖φf ‖η‖�i‖η

= |〈ηφf |u(τ, 0)φi〉|
|ηφf ||φi | = β. (12)

As in a conventional time-dependent scenario one is rarely able to compute the time-evolution
operator exactly. However, assuming the non-Hermitian term in (8) to be small when compared
with h, we may apply standard perturbation theory by iterating the DuHamel formula [20–22]

UH(t, t ′) = Uh(t, t
′) − ig

∫ t

t ′
ds UH (t, s)h1(s)Uh(s, t

′).

Taking Uh(t, t
′) = exp(−ih(t − t ′)) we obtain to first order in g

UH(t, 0) = e−iht − ig
∫ t

0
ds e−ih(t−s)h1(s) e−ihs . (13)

We may then compute for instance perturbatively the matrix element

〈φf |UH(t, 0)φi〉 = (1 − e−iωt )
[

1
2 + ig〈φ+|Im h1φ−〉].

When h1 is Hermitian we naturally recover the result in (6). One may now proceed
perturbatively using the above expression for UH(t, 0). However, it is clear from the previous
discussion that essentially all aspects of the problem, which we wish to consider here, may be
illustrated by selecting a two-level system from the larger, possibly even infinite, spectrum.
Thus without loss of generality one may consider a 2 × 2 matrix Hamiltonian.

In order to set the scene for the next section let us briefly recall with some minor variation
the analysis of [6].

1 In the preprint quant-ph/0701223v2, Is PT-symmetric quantum mechanics just quantum mechanics in a non-
orthogonal basis? by D Martin the result of Bender et al [6] has been challenged. However, the author has just
missed this point and only argued on the two equivalent formulations of equation (4), which evidently always yields
the same passage time (7). Some time after the publication of our preprint a further manuscript appeared, which
also challenges the results in [6], namely preprint quanth-ph/0706.3844 Quantum Brachistochrone Problem and
the Geometry of the State Space in Pseudo-Hermitian Quantum Mechanics by A Mostafazadeh. The author uses
interesting geometrical arguments, but makes the same mistake as D. Martin by arguing in the setting of equation (4)
and not addressing the crucial equation (9).
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2.3. A 2 × 2 matrix Hamiltonian

A pair of 2 × 2 matrix Hamiltonians related by a similarity transformation as in (2) is

H =
(

r eiθ s

s r e−iθ

)
, h =

(
r cos θ −ω

2
−ω

2 r cos θ

)
, (14)

with ω = 2
√

s2 − r2 sin2 θ and r, s, θ ∈ R. For the eigenvalues ε± = r cos θ ±ω/2 to be real,
one requires s2 � r2 sin2 θ , such that it is meaningful to introduce the new parameterization
sin α = r/s sin θ with α ∈ R. This parameter range guarantees therefore unbroken PT -
symmetry. The Hamiltonians h and H are related by the similarity transformation in (2),
involving the Hermitian operator

η = 1√
cos α

(
sin α/2 −i cos α/2

i cos α/2 sin α/2

)
. (15)

The normalized eigenstates of H and h are

|�±〉α = e
iπ
4 (1∓1)

√
2 cos α

(−e± iα
2

∓e∓ iα
2

)
, |φ±〉 = e

iπ
4 (1±1)

√
2

(
1

∓1

)
, (16)

respectively. Taking now as initial and final states the orthogonal states |φi〉 and |φf 〉 as
defined in (5), we compute

e−ith|φi〉 = e−ir cos θt

(
cos ωt

2

i sin ωt
2

)
, (17)

and recover from (1), with β = 1, the passage time τ = π/ω. This is what we expect from the
general expression (7) and in fact it is the same expression as obtained in [6], where essentially
the second equation in (1) was evaluated. On the other hand, if we now let the particle pass
through the region in which the corresponding Hamiltonian becomes non-Hermitian, we may
compute τ by analyzing (9) or possibly (10). Acting with u(t, 0) = e−ith on the transformed
initial state yields

e−ithη|φi〉 = e−itr cos θ

√
cos α

(
sin 1

2 (α − tω)

i cos 1
2 (α − tω)

)
. (18)

When not acting on eigenstates with the operator e−ith or e−itH one has to turn the infinite
sum of operators into a matrix multiplication, see e.g. [6]. For this one can exploit the fact
that any 2 × 2-matrix M can be decomposed in terms of Pauli matrices as M = µ0I + µ · σ

with µi ∈ C, i = 0, 1, 2, 3. Having expressed h or H in this manner, the operation with
e−ith or e−itH on a state reduces to a simple matrix multiplication by using the identity
eϕµ·σ = cos ϕI + i sin ϕµ · σ .

Using (18), the matrix element in (9) is computed to

〈φf |U(τ, 0)φi〉η = i e−iτr cos θ
sin

(
α − τω

2

)
cos α

. (19)

Choosing the constant β = 1 and substituting (19) into (9), we compute with ‖φf ‖η‖φi‖η =
1/ cos α the passage time τ = π/ω + 2α/ω. This expression involves now the parameter
α, which may be tuned to make τ arbitrarily small while keeping the transition frequency
constant, as was first pointed out in [6].

There are two equivalent ways of looking this result. On one hand we may think that
one has solved the quantum brachistochrone problem entirely within the framework of the
Hermitian system for some states, which have no obvious intrinsic meaning without referring
to the non-Hermitian counterpart. On the other hand we may think that one has solved the

5
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Table 1. Passage times for various different initial and final states evolved by means of a PT -
symmetric non-Hermitian time evolution operator. All matrix elements are computed with the
η-inner product and states are normalized with the η-norm.

|ψi〉 |ψf 〉 U(τ, 0) τ

|�i〉 |�f 〉 e−iHτ π/ω

|φi〉 |φf 〉 e−iHτ π/ω + 2α/ω

|φi〉 |�f 〉 e−iHτ 2π/ω + α/ω

|�i〉 |φf 〉 e−iHτ 2π/ω + α/ω

time-dependent problem as outlined in the previous subsection involving the evolution with a
non-Hermitian Hamiltonian between two orthonomal states in the Hermitian system.

Similarly, we may consider a situation in which the final state is constructed from
eigenstates of the non-Hermitian system and compute instead

〈�f |U(τ, 0)φi〉η = i e−iτr cos θ
cos 1

2 (α − τω)√
cos α

. (20)

This yields for the same choice of β = 1 the passage time τ = 2π/ω + α/ω with
‖�f ‖η‖φi‖η = 1/

√
cos α. We summarize our findings for the different types of scenarios in

table 1.
Next we demonstrate that such type of behaviour is not limited to PT -symmetric

Hamiltonians, but can also be found for dissipative systems, i.e. genuinely non-Hermitian
Hamiltonians with complex eigenvalues with negative imaginary part.

3. Non-Hermitian dissipative Hamiltonian systems

As argued above it is sufficient to consider a 2 × 2 matrix Hamiltonian. We will now consider
two different types of dissipative systems, i.e. those which have real and those with complex
transition frequencies.

3.1. Real transition frequency

Let us modify the Hamiltonian H in (14) slightly, such that it becomes a genuinely dissipative
system. In order to achieve this we need to break the PT -symmetry not only for the
wavefunction, but also for the Hamiltonian. Such type of Hamiltonians result for instance as
effective Hamiltonians by coupling two non-degenerate states to some open channel as for
instance explained in [23, 24]. We consider here such type of Hamiltonian of the particular
form

H̃ =
(

E + ε 0
0 E − ε

)
− iλ

(
r eiθ s

s r e−iθ

)
, (21)

with E, ε, r, s, θ, λ ∈ R. Similarly as for (14) we will not provide here a concrete physical
meaning for the parameters, as we would like to keep our treatment as generic as possible.
Note that this Hamiltonian does not simply correspond to going to the regime of broken PT -
symmetry for the Hamiltonian (14) of the previous section. Instead, in the simultaneous limit
E, ε → 0 and λ → i, the dissipative Hamiltonian system H̃ reduces to the PT -symmetric
Hamiltonian H.

The eigenvalues of H̃ are computed to

ε̃± = E ± ω̃

2
− irλ cos θ, (22)

6
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with ω̃ = ε̃+ − ε̃− = 2
√

(ε + rλ sin θ)2 − λ2s2 denoting the transition frequency. For λ being
restricted to the interval −ε/(s + sin θ) � λ � ε/(s − sin θ), we can guarantee that ω̃ ∈ R.
In this parameter range the complex energy eigenvalues are indeed of the desired form of
a decaying state, that is ε̃± = E± − i�/2 with decay width � = 2rλ cos θ ∈ R

+ when
−π/2 � θ � π/2. It is then useful to introduce the parameterization

sin α̃ = sλ

ε + rλ sin θ
, (23)

such that tan α̃ = 2sλ/ω̃. The right eigenvectors of H̃ corresponding to the eigenvalues ε̃± in
(22) may then be expressed as

|�̃±〉 = 1√
2
(|�−〉α̃ ± i|�+〉α̃), (24)

where |�±〉α is defined in equation (16). From the considerations in the previous section
it is clear that the operator η is vital for the computations of the matrix elements occurring
in the quantum brachistochrone problem, especially when one wishes to evolve eigenstates
of a Hermitian Hamiltonian with a time-evolution operator associated with a non-Hermitian
system. However, since for the case at hand the Hamiltonian H̃ is now genuinely complex
there cannot exist any similarity transformation, which relates it to a Hermitian Hamiltonian.
Nonetheless, we can use the other property of η, namely that it can be utilized to introduce a
physically well-defined inner product. This means we can seek a transformation such that the
eigenstates (24) become orthonormal with regard to this product. From (24) it is clear that
we can take the same form for η, but only have to replace α by α̃ to define a new η̃. With the
help of this new operator we construct the eigenstates |φ̃±〉 = η̃|�̃±〉, which yield indeed the
desired orthogonality relations

〈�̃n|�̃m〉η̃ = 〈η̃−1φ̃n|η̃−1φ̃m〉η̃ = 〈φ̃n|φ̃m〉 = δnm, (25)

for n,m ∈ {+,−}. The states φ̃ are eigenstates to the analogue of the Hermitian counterpart
of a pseudo-Hermitian Hamiltonian. In fact, the adjoint action of η̃ diagonalizes H̃ as

h̃ = η̃H̃ η̃−1 =
(

E − i�
2 − ω̃

2 0

0 E − i�
2 + ω̃

2

)
. (26)

Obviously we have now h̃ �= h̃†, but h̃ has the same eigenvalues as H̃ , because it lies in the
same similarity class.

3.1.1. �̃ → �̃ via Ũ. We are now in the position to solve the quantum brachistochrone
problem for dissipative non-Hermitian Hamiltonians. For this we note first that when we try
to compute the passage time τ directly from the relation (1) with β = 1, it will turn out to
be complex. This would of course always be the case when the transition amplitude for all
real values of t is smaller than β. Therefore in order to find a physical solution we need to
reformulate the quantum brachistochrone problem slightly to accommodate also the dissipative
non-Hermitian Hamiltonians. A natural expression to consider is one which features explicitly
the decay width �, such as

|〈φ̃f |ũ(τ, 0)φ̃i〉| = |〈�̃f |Ũ (τ, 0)�̃i〉η̃| = β̃ e− �π
2ω̃ , (27)

for normalized initial and final states with 0 � β̃ � 1. This means for stable particles,
i.e. � → 0, we recover the expression (4). In analogy to the normalized eigenstates of the
Hermitian Hamiltonian h in (5), we take now the initial and final states to be

|φ̃f/i〉 = η̃√
2
(|�̃−〉 ± i|�̃+〉) = 1√

2
(|φ̃−〉 ± i|φ̃+〉). (28)

7
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Table 2. Passage times for various different initial and final states evolved by means of a dissipative
non-Hermitian time evolution operator with real transition frequency. All matrix elements are
computed with the η̃-inner product and states are normalized with the η-norm.

|ψi〉 |ψf 〉 Ũ (τ, 0) τ

|�̃i〉 |�̃f 〉 e−itH̃ π/ω̃

|φ̃i〉 |φ̃f 〉 e−itH̃ π/ω̃

|φ̃i〉 |�̃f 〉 e−itH̃ π/ω̃

|�̃i〉 |φ̃f 〉 e−itH̃ π/ω̃

Assuming at first no time dependence in the Hamiltonian, we compute

〈φ̃f |e−it h̃φ̃i〉 = 1
2 e−iε̃−t (1 − e−iω̃t ). (29)

Solving then (27) for the passage time in complete analogy to (4) with β̃ = 1 yields the same
expression for the passage time, namely τ = π/ω̃. Alternatively we could have also computed
the second expression in (27) using Ũ (t, 0) = e−itH̃ , which would of course lead to the same
result. Possibly more interesting passage times can be obtained when we evolve the states
(28) with the analogue to the non-Hermitian time evolution.

3.1.2. �̃ → �̃ via ũ. We may assume now an explicit time dependence as in section 2.3 and
try to evolve the states |φ̃i〉 by means of a time-evolution operator involving the Hamiltonians
H̃ in (21). For that situation to make sense we need to consider the η̃-inner products and
generalize (9) to

|〈φ̃f |Ũ (τ, 0)φ̃i〉η̃|
‖φ̃f ‖η̃‖φ̃i‖η̃

= |〈η̃φ̃f |ũ(τ, 0)η̃φ̃i〉|
|η̃φ̃f ||η̃φ̃i |

= β̃ e− �π
2ω̃ , (30)

by introducing the decay width on the right-hand side, similarly as we extended (4) to (27). This
way the passage time will result to be real. Assuming a simple stepfunction time-dependence
in (8), we compute

e−it h̃η̃|φ̃i〉 = e−it (E−iλr cos θ)
√

cos α̃√
2
(

cos α̃
2 + sin α̃

2

) (−eitω̃/2

i e−itω̃/2

)
(31)

and the matrix element

〈φ̃f |e−itH̃ φ̃i〉η̃ = 〈η̃φ̃f |e−it h̃η̃φ̃i〉 (32)

= −i e−it (E−iλr cos θ) sin
tω̃

2
. (33)

Since ‖φ̃f ‖η̃‖φ̃i‖η̃ = 1 in (30), we obtain with β̃ = 1 the passage time τ̃ = π/ω̃. Likewise
we may evaluate analogues to the other matrix elements computed in section 2.3. Our results
are summarized in table 2.

Thus somewhat surprisingly, despite the fact the matrix elements are somwhat different,
the normalization factors compensate for this and in all cases the passage time results to
τ̃ = π/ω̃. This might suggest that we should really attribute the possibility of tunable passage
times to the PT -symmetry. However, we have not yet studied the possibility when ω̃ /∈ R.

3.2. Complex transition frequency

Often it is not even possible to restrict the parameter range so nicely like in the previous
subsection as to ensure that ω̃ ∈ R. Instead considering the scenario of leaving this regime
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for the above example, let us consider a different system, which does not even possess such a
regime and can be found for instance in [25]

Ĥ =
(

E + ε 0
0 E − ε

)
− iλ

2

(
2 cos2 φ sin 2φ

sin 2φ 2 sin2 φ

)
, (34)

with E, ε ∈ R and λ, φ ∈ C. In [25] the special case λ, φ ∈ R was treated for a concrete
physical setting. Here we keep these parameters completely generic. The eigenvalues of Ĥ

are

ε̂± = E ± ω̂

2
− i

λ

2
, (35)

with energy gap ω̂ = ε̂+ − ε̂− =
√

4ε2 − λ2 − 4iελ cos 2φ. Now we have lost the property of
the transition frequency to be real. We parameterize instead

e−iα̂ = −iλ sin 2φ

2ε + ω̂ − iλ cos 2φ
, (36)

such that the eigenvectors can simply be taken to be |�̂±〉 = |�±〉α̂ . Replacing now also in η,
as defined in (15), the parameter α by α̂ defines a new operator η̂. We employ this operator to
construct the Hamiltonian

ĥ = η̂Ĥ η̂−1 =
(

E − i λ
2 − ω̂

2

− ω̂
2 E − i λ

2

)
, (37)

with eigenvectors |φ̂±〉 := |φ±〉 as defined in (16). We may now compute the passage time in
a very similar fashion as for the PT -symmetric example, keeping however in mind that the
transition frequency ω̂ as well as the parameter α̂ are complex. A consequence of the latter is
that η̂ is no longer Hermitian, that is η̂† �= η̂. For convenience we introduce the abbreviations
ω̂ = ω̂r + iω̂i , α̂ = α̂r + iα̂i and λ = λr + iλi for λi/r , ω̂i/r , α̂i/r ∈ R.

3.2.1. �̂ → �̂ via Û . It is straightforward to compute the square of the transition probability

|〈φ̂f |e−ithφ̂i〉|2 = 1
2 e−λr t [cosh(tω̂i) − cos(tω̂r )], (38)

when taking the initial and final states to be the orthonormal states as defined in (5), with
|φ±〉 → |φ̂±〉. There are now various possibilities we can equate this to and subsequently
compute a passage time τ . However, choosing a generic 0 � β � 1 as for instance in
equation (1) would lead to very involved solutions, due to the transcendental nature of this
equation. Furthermore, since we are now dealing with a dissipative system the right-hand side
of (38) only reaches a maximum β ′ < 1. Thus the choice β > β ′ would lead to unphysical
complex passage times. In order to keep matters simple, we could make a natural choice
and just take this maximum of the right-hand side of (38), i.e. β = β ′. However, due to
the transcendental nature of this equation, there is no elegant analytic solution for τ to this
equation. Instead we try to make this solution to be as closely related to previously computed
expressions as possible and choose the right-hand side such that the passage time becomes
τ = π/ω̂r leading to a particular β̌ � β ′. We note that this choice does not lead to a loss of
generality with regard to the main aim of our investigation, which is to seek passage times
which can be made arbitrarily small. Taking any other value below the maximum will simply
lead to another definite value for τ , when keeping ω̂ constant.
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Figure 1. Right-hand side (rhs) minus the left-hand side (lhs) of equation (41) as a function
of time t with fixed values of ε = 2.5, E = 2, ω = 4.87 − i3.31 for φ1 = 0.2, λ1 = 3.5;
φ2 = 0.3, λ2 = 3.73 + i0.2; φ3 = 0.35, λ3 = 3.87 + i0.34; φ4 = 0.4, λ4 = 4.02 + i0.52. The
corresponding passage times τ are simply taken to be the smallest values of t for which the rhs–
lhs = 0.
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Figure 2. Right-hand side minus the left-hand side of equation (41) as a function of time t
with fixed values of φ = 0.2, E = 2, ω = 6.99 − i0.46 for ε1 = 9.0, λ1 = 1.85 − i14.84;
ε2 = 9.5, λ2 = 2.72 − i16.32; ε3 = 9.9, λ3 = 3.41 − i17.29; ε4 = 11.0, λ4 = 5.01 − i19.62.

3.2.2. �̂ → �̂ via û. As in all previous scenarios we take the special case �̂ → �̂ via Û as
a benchmark for the choice of the constant β = β̌, since it can be dealt with analytically. Let
us now compute

|〈φ̂f |e−itĤ φ̂i〉η̂|2 = cosh(tω̂i) − cos(2α̂r − tω̂r )

2eλr t cos α̂ cos α̂∗ . (39)

With

‖φ̂f ‖2
η̂‖φ̂i‖2

η̂ = cosh2 α̂i

cos α̂ cos α̂∗ (40)

and the choice of β = β̌ as discussed in the previous section, namely taking it as the right-hand
side of (38) with t → π/ω̂r , the quantum brachistochrone problem amounts to solving
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cosh(tω̂i) − cos(2α̂r − tω̂r )

cosh2 α̂i(1 + cosh(πω̂i/ω̂r ))
= eλr (t−π/ω̂r ) (41)

in this case. Since this is a transcendental equation, we can not solve it in complete
generality and we are therefore content to discuss some numerical solutions. For this
purpose we can solve the equation of the transition frequency for the coupling constant
λ = −2iε cos φ +

√
4ε2 sin2 2φ − ω2 and express it as a function of φ, ε and ω. Since we want

to keep ω constant, we investigate (41) as a function of time t by varying φ and λ or ε and λ

see figure 1 or figure 2, respectively.
The analysis of equation (41), as depicted in figures 1 and 2 demonstrates that it is

possible to find tunable passage times for Hamiltonian systems of the type (34). The precise
dependence of the system on the parameters is rather involved in this case, but our analysis
demonstrates that it is possible to approach τ ≈ 0. Similar conclusions can be drawn when
changing |φf 〉 to |�f 〉 or |φi〉 to |�i〉, respectively.

4. Conclusion

In [6] the authors have extended the formulation of the quantum brachistochrone problem by
allowing that the time-evolution operator may be associated to non-Hermitian Hamiltonians
which are PT -symmetric, that is those with real eigenvalues. Here we did not insist on the
PT -symmetry of the Hamiltonian, but allowed this symmetry to be completely broken. In
order to take the most extreme case, we did not just spontaneously break the PT -symmetry for
the wavefunction, which would result in complex conjugate pairs for the energy eigenfunction,
but we allowed in addition that the PT -symmetry is also broken for the Hamiltonian. Thus we
have considered an effective Hamiltonian whose energy eigenvalues have a negative imaginary
part, such that it is associated to dissipative systems. We found the same intriguing feature as
observed in [6] for the quantum brachistochrone problem for PT -symmetric non-Hermitian
Hamiltonians, namely that the passage time can be made arbitrarily small also for non-
Hermitian Hamiltonians associated to these types of systems. Our observations suggest that
this type of phenomenon may occur when one projects between orthonormal states, which are
not eigenstates of the non-Hermitian Hamiltonian associated to the time-evolution operator,
irrespective of whether this Hamiltonian is PT -symmetric or not.

Clearly there are various open questions to be answered. First of all, it would be highly
desirable to have a more formal and generic proof for these phenomena, rather than case-
by-case studies. This holds for the PT -symmetric case treated in [6] as well as for the
case presented here. In addition, one could make the above considerations more involved
by allowing more complicated time-dependences rather than the simple stepfunction and
study other possibilities in (8). For such more realistic scenarios we may have to resort to a
perturbative treatment using (13).
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